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The stability of the solutions of a certain class of non-linear systems is considered in the first approximation. The method of 
Lyapunov functions is used to obtain the sufficient conditions for stability with respect to all the variables and asymptotic stability 
with respect to part of lhe variables in the case when the first-approximation system is essentially non-linear. © 2000 Elsevier 
Science Ltd. All rights ieserved. 

1. Consider the system of differential equations 

X = F(X) + G(t, X, Y) 

~' = Q(t, Y) + D(t, X, Y) 
(1.1) 

where X and Y are vectors of dimensions n and k, respectively and the components of the vector F(X) 
are continuous functions, homogeneous of order Ix, p. I> 1; the vector functions Q(t, Y), G(t, X, Y), D(t, 
X, Y) are defined and continuous for 

t~>O, IIXIl~<h, IIYIl<~h (1.2) 

(where h is a positive constant) and satisfy the conditions 

Q(t, 0)-0, IIGII~cl(X,Y)IIXII ~, llDll<~c2 IIXII x 

where Cl(X,Y) ~ 0 as Ilxll + IIYII cz > o , z  > o. 
Along with Eqs (1.1), consider the system 

IK = F(X), $: = Q(t, Y) (1.3) 

which we call the first-approximation system for (1.1). 
We wish to find the conditions under which stability of the trivial solution of the first-approximation 

system implies that the trivial solution of system (1.1) will also be stable. 
Let g = 1, F(X) = AX, Q(t, Y) = CY, where A and C are constant matrices. If C = 0, we have 

the well-known Lyapunov-Malkin stability theorem in the critical case of multiple zero roots 
[1, pp. 108-113]. This theorem has been extended [2-4] to the case in which C ~ 0, and it has been 
shown that if the trf, vial solution of the first-approximation system is stable and asymptotically X-stable, 
then the same holds for the trivial solution of system (1.1) if 3. ~ 1. 

In what follows we will find the sufficient conditions for system (1.1) to the stable in the non-linear 
approximation. 

2. Let the components of the vector F(X) be continuously differentiable functions, homogeneous of 
order IX, g > 1. Let us also assume that the trivial solution of system (1.3) is stable and asymptotically 
X-stable, and that a Lyapunov function Vl(t, Y) exists possessing the following properties: (1) Vl(t, Y) 
is continuously differentiable for t />  0, IIYII ~< h and has bounded partial derivatives OV1/Oyi, i = 
1 . . . . .  k; (2) Vl(t, Y) is positive definite; (3) dVl( t ,  Y) /d t  I (1.3) <~ O. 
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Note that if V](t, Y) has these properties, the trivial solution of the first-approximation system is 
uniformly stable. 

Theorem 1. If 

~, > I.t- l (2.1) 

then the trivial solution of system (1.1) is uniformly stable and asymptotically X-stable. 

Proof. Since the trivial solution of system (1.3) is asymptotically X-stable, functions V(X) and 
W(X), positive definite and homogeneous of orders m and m + ~t - 1, respectively, exist such 
that 

(av / ax)  r F(x) = - w ( x )  

and moreover the function V(X) is continuously differentiable [5, pp. 115-123, 6]. 
Evaluating the derivatives of V(X) and Vl(t, Y) along trajectories of system (1.1), we obtain the 

following estimates for all t, X, Y, in domain (1.2) 

al II x I1" ~< v ( x )  ~< a 2 II x IIm 

d V / d t  I(i,) ~< II X II m÷"-I (-a3 + a4q (X, Y)), 

ai>O, i= 1 .... 5 

Consequently, a number y > 0 exists such that, if for t ~ [to, tl] the solution (X(t). Y(t)) r of 
system (1.1) remains in the domain HxI[ < y, IIYII < ~', then the following conditions hold in that 
interval 

d V ( X ( t ) )  I (It <~ - a 3 II X(t) II m÷"-~ 12 

Vt(t, Y(t)) ~< Vl(t o, Y(to))+asSito II X(x)U x dx 

Applying the method of estimates [5], we see that then the following inequalities hold for all 
t E [to, tl] 

II X(t)II ~< b~ II X(to)II (1 +/,2 II X(to)II "-~ (t - t o))-j/(~'-~) 

V~(t, Y(t)) ~< V~ (to, Y(to))+ b3 U X(to)II x-"+~ 

where the positive constants bl, b2 and b 3 are independent of the initial data of the solution. 
Suppose we are given an arbitrarily small number e, 0 < e < y. Let 

(2.2) 

= in f  V~ (t, Y )  
t ~O.IIYII=E 

Choose ~ > 0 such that the following conditions hold 

2b38X-la+l<[3, btS<g, Vl(t ,Y)<[3/2 for UYII<5 

It follows from estimates (2.2) that if the initial data of the solution (X(t), Y(t)) T satisfy the inequalities 
to t> o, I I x(t0) I I < 8, I IV(to) I I < ~, then for all t I> t o we have I Ix( t )  I I < E, I IY(t) I I < E, and at the same 
time IIX(t) II --> 0 as t --> + ~ .  The  theorem is proved. 

Remark. Theorem 1 states that if ~ > 1, the trivial solution will be stable for 3. < I.t also. Previously 
[2-4] it was assumed, for Eqs (1.1) with a linear stationary first-approximation system, that 3. ~> 1, that 
is, 3. 1> ~t. It can be shown that the propositions established in [2-4] also hold for 3. > 0. Thus, inequality 
(2.1) is also a sufficient condition for uniform stability and asymptotic X-stability in the case when 
i x = l .  



The stability of a class of non-linear systems 523 

Let us assume now that the vector function F(X) in system (1.1) is twice continuously differentiable 
and that the vector G(t, X, Y) may be expressed as 

G(t, X, Y) = B(t)R(X) + H(t, X, Y) 

where the elements of the /-dimensional vector R(X) are continuously differentiable functions, 
homogeneous of order o, t~ I> 1 and B(t) is an n × l matrix which is continuous and bounded for 
t ~> 0 together with the integral 

l(t) = So B(x)d~ (2.3) 

The vector function H(t, X, Y) is assumed to be continuous in the domain (1.2) and to satisfy the 
inequality J[HJ[ ~< c3 (X, Y) [JXJJ ~, where c3(X, Y) --~ 0 as JJXJJ + [JY[J --~ 0. 

Applying Theorem 1, we find the sufficient conditions for uniform stability and asymptotic X-stability 
of the trivial solution: o > Ix, ~ > ~ - 1. 

The restriction t]hus obtained for the parameter a may be weakened by using a construction, proposed 
in [7, 8], of non-stationary Lyapunov functions for non-linear systems. 

Theorem 2. If the inequality 2a > Ix + 1, ~. > p.- 1 holds, the trivial solution of system (1.1) is uniformly 
stable and asymptotically X-stable. 

Proof. Let V(X) and Vl(t, Y) be Lyapunov functions for the first-approximation system. Since F(X) 
is twice continuou,dy differentiable, we may assume that V(X) is also twice continuously differentiable 
[5, pp. 119-123: 6]. 

Choose a Lyapunov function for system (1.1) in the form 

V 2 (t, X) = V(X) -  (i)V //)X) r l(t)R(X) 

For all t, X and Y in domain (1.2), the following inequalities hold 

at II X I1" -a3 II X II ''÷'~-I ~ V2(t, X ) ~  a 2 II X I1" +a3 II X I1 ''+°-t 

dV2. ' Id t  10.1) ~ II X ir '+~-I (-a4 +as  II X II °-I +a6 II X II 2°-p-t +aTC3(X, Y)) 

ai>O , i = 1  ..... 7 

Using the functions Vl(t, Y) and V2(t, X), we continue the proof as in the case of Theorem 1. 
Thus, the trivial solution may also be stable for a ~< Ix. 
Now consider the system 

= B W I B X  + S(Y)X + B(t)R(X) 
(2.4) 

~' --- Q(t, Y) + D(t, X, Y) 

where W(X) is a continuously differentiable negative definite function, homogeneous of order ~t + 1, 
Ix > 1 and S(Y) is a skew-symmetric matrix, continuous for JJYIJ ~< h, such that S(0) = 0; the matrix 
B(t) and the vectors R(X), Q(t, Y), D(t, X, Y) satisfy the conditions specified above. As before, we will 
assume that the system Y = Q(t, Y) has a Lyapunov function Vl(t, Y) with properties 1-3. 

Theorem 3. If a -~'- Ix, ~ > ~t - 1, the trivial solution of system (2.4) is uniformly stable and asymptotically 
X-stable. 

To prove this, we must choose the Lyapunov function in the form 

V(t, X) = 1 x r x  - xrI ( t )R(X)  
2 

and then again use the method of estimates. 

3. Let us consider some examples of the use of the theorems proved above. 
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Example 1. Suppose the motion of a holonomic mechanical system with n + k generalized coordinates 
(q, s) T = (ql . . . . .  q~, sl . . . . .  sk) r is described by the equations 

il = - a P  t / aq + ~gW / a/I + G(t, q,/I, s, s) 

= -OP2 / as + D(t, q, q, s, s) (3.1) 

where Pl(q)  is a continuously differentiable positive-definite function, homogeneous  of order  
v + 1, v > 1, W(/I) is a continuously differentiable negative-definite function, homogeneous  of  
order  IX + 1, Ix > 1 and P2(s) is a positive definite function, continuously differentiable for Ilsll -< h; 
the vector functions G and D are continuous in the domain t > 0, Ilqll -< h, Ilqll -< h, Ilsll -< h, 
II ~ II ~ h and satisfy the inequalities 

II G II ~< cj (q,/l ,  s, s) II q II ~, II D II ~< c2 II q II x 

where Cl(q,/1, S, S) "--> 0 as II q II + Ilelil + II s II + II ~ II ~ 0, and a,  ~. and c2 are positive constants. 
We will investigate conditions of  stability of  the equilibrium position 

q=i]=O, s=s=O (3.2) 

Consider the function 

V(q, cl) =12clr il + Pl(q))P + cP( (q)itr q 

where c > 0, 13 1> 1, r />  1. 
If  

r -  13 + I = max , ) (3.3) 

then for sufficiently small c the function Vwill be positive-definite, and its derivative along trajectories 
of  the system 

ii = - 3 P j / 3 q  + ~Wlai] (3.4) 

will be a negative-definite function; moreover  6, 0 < 6 < 1 exists, such that, for Ilqll < 8, II/lll < 8, 

a,(ll q II I~+') + II ti II 2~) -< V(q, il) ~ a2(ll q I113(~+'> + II ~1 I1213) 

dV I dt 1(3.4) ~< - a3(ll q II (~+l)('+') + II/I I1213+~-' ) 

where al,  a2 and a 3 are positive constants. 
Taking condition (3.3) into account, we have 

dVldt t3 4) ~< - a3(ll q II ~v÷'xr÷'> + II/i II 2(~*'}) ~< - a3a4 (11 q I113(v÷' + II/11121~) v --< - asV v 

r + l  
a 4 =  min (Iz, 12~+lz212v), as=a3a4a2 ?, ) ' = T > I  

4 +4 =' 

Applying the method of  estimates [5, pp. 70-72], we see that solutions of  system (3.4) beginning at 
t = 0 in a sufficiently small neighbourhood of  the point q = cl = 0 will satisfy the following conditions 
for all t t> 0 

tlq(t)ll(V+lxr-~+~)<-A/(t+l), Ilit(t)ll2(r-~+n<-A/(t+l), A > 0  

For the system 
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we choose a Lyapunov function in the form 

V~(s, ~) = 1 j ~ +  ~(s) 
2 

Using the functions just constructed, it can be shown that if 

( I x - l ~ v +  I )}  

the equilibrium position (3.2) of system (3.1) is uniformly stable with respect to all the variables and 
asymptotically stable with respect to q,/1. 

Example 2. Suppose we are given a rigid body rotating in inertial space at an angular velocity co about 
its centre of inertia O. Let Oxyz be coordinate axes attached to the body, coinciding with its principal 
central axes. The equations of rotational motion of the body under the action of a moment M have the 
form 

06~+cox Oco = M 

where O is the inertia tensor of the body, O = diag(Al, A2, A3} [9]. 
Let us consider the motion of the rigid body in a resistant medium. 
We will assume; that the moment of the dray forces of the medium is defined by the formula 

M = (3(10~, y20~, 0) r, where ~(1 and 3(2 are negative constants and IX is a rational number with odd 
numerator, Ix > 1. We will also assume thatA1 > A 3 andA2 > A 3. 

Using the function 

V = AI(A I - A3)o)l 2 + A2(A 2 - A3)t022 

it can be showing [3, pp. 19-20] that the equilibrium position co = 0 is asymptotically stable with respect 
to  t.01, (02. 

Suppose that, besides the moment M, the body is subject to another moment, due to perturbing forces 
M1 = B(t)R(ol, o~2), where the components of the/-dimensional vector R(ol, o2) are continuously 
differentiable functions, homogeneous of order o, o/> 1, and B(t) is a 3 × I matrix which is continuous 
and bounded for t /> 0 together with the integral (2.3). 

Applying Theorem 3, we see that if o ~ Ix, 1 < Ix < 3, the equilibrium position o = 0 of the perturbed 
system is uniformly stable with respect to all the variables and asymptotically stable with respect to ol  
and o2. 

If the last component of the vector M1 is zero, the Lyapunov function can be chosen in the form 

V = 10~roo- 0~rl(t)R(c01, ~2) 
2 

If o I> IX, the function we have constructed satisfies all the conditions of Rumyantsev's theorem on 
asymptotic stability with respect to part of the variables [10, p. 38]. Consequently, in this case the 
equilibrium position will be uniformly stable with respect to all the variables and asymptotically stable 
with respect to oi  and o2 for Ix/> 3 too. 
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